

Secure Communication

HTTPS –
On the example of Tomcat webapps

HTTPS

● Hypertext Transfer Protocol Secure
● Encryption/decryption of data packages
● Additional Security Layer

– Transport Layer Security (TLS); old: SSL

https://www.oreilly.com/library/view/http-the-definitive/1565925092/httpatomoreillycomsourceoreillyimages96902.png

HTTPS

● Protects against eavesdropping
● Protects against Man-in-the-middle attacks?

● Only with certificate authentication!
– And trustworthy certificate authorities (CA)...

● Encryption through:
● Asymmetric keys (public & private key pair)
● Symmetric keys

Asymmetric key encryption

● e.g. RSA (Rivest-Shamir-Adleman)
● Calculate e,d,n such that:

● For a message m : (me)d ≡ m (mod n)
● Then also (md)e ≡ m (mod n)

=> n & e = public key

=> n & d = private key

● Is secure because prime factorization of large
integers (n) takes a lot of time

Webservice Certificate

● To prove that the webservice is who the client
believes it is

● Contains:
● Domain / server name, Location
● Organizational information, Validity time
● Public key
● Digital Signature

Webservice Certificate

● Self-signed Certificate is encrypted with your
own private key

● Others can use your public key to verify that you
encrypted the Certificate

● But noone trusts that this Certificate is actually
from the owner of the website

Certificate Authority (CA)

● Trusted agencies that can verify & sign your
certificate to build a chain of trust

● GWDG (https://info.gwdg.de/docs/doku.php?id=de:services:it_security:pki:start)

● Telecom, Bundesnetzargentur, Globalsign,
Let's Encrypt, ...

● The most common ones are pre-stored in your web-
browser

● Root CAs
● What happens if such an agency is hacked?

TLS/SSL Implementation in
Tomcat

● Only necessary if used as a stand-alone web
server

● Not if used as a Servlet container; e.g. when
using in combination with Apache Web Server

● Supported Certificate Keystores
● JKS (Java Keystore), PKCS11, PKCS12

TLS/SSL Implementation in
Tomcat

● Creation of a new JKS keystore
● cd %JAVA_HOME%\bin
● keytool -genkey -alias tomcat -keyalg RSA

– Optional: -keystore \path\to\my\keystore
● Answer a few questions

– Tomcat default password: „changeit“
● Self-signed

– Not trustworthy, but good enough for a test

Implementation in Tomcat

● Creation of a new JKS keystore

Java keytool

● -genkeypair / -genkey
● Generates one private & public key pair
● -alias : The name of the private key
● -keyalg : Key generation algorithm used

– RSA, DES, DSA
● -keystore : Location & name of the keystore file
● -keysize : Number of bytes used

– 1024, 2048, ...

Java keytool

● -list
● Prints the content of the keystore
● -alias : Only the specified key
● -v / -rfc : Human-readable output
● -keystore : Location & name of the keystore

● -certreq
● Generates a Certificate Signing Request (CSR)
● -alias / -keystore / -sigalg / etc. as before

TLS/SSL Implementation in
Tomcat

● Find the server.xml in ..\Tomcat\conf
● Find the example connector with

● <Connector port="8443"
protocol="org.apache.coyote.http11.Http11NioProtocol" …

● Change it to:

TLS/SSL Implementation in
Tomcat

● Force your servlet to work with TLS/SSL
● Edit the web.xml and add:

References

● https://tomcat.apache.org/tomcat-8.0-doc/ssl-howto.html

● https://docs.oracle.com/javase/6/docs/technotes/tools/windows/
keytool.html

● https://docs.oracle.com/cd/E19830-01/819-
4712/ablrb/index.html

Webservice Multi-user Support

Session management & Authentication -
On the example of Tomcat webapps

Sessions

● Originally the HTTP protocol was meant to be
state-less

● Demand of webservices to have a state specific
to each client

● Solution?
● Cookies, hidden form fields, URL rewriting

=> Session management
* http://static2.fr.de/storage/image/4/2/3/7/657324_608x342_1oFefH_eH4orI.jpg

*

Basic Authentication in Tomcat

● Automatic popup for username/password if
requesting a webapp

● Users are stored in the tomcat-users.xml
● Users can be given roles
● Webapps can be restricted to specific roles in

the web.xml

● Does not work with sessions, but the
Authorization request header

Basic Authentication in Tomcat

● Tomcat-users.xml

● Through the server.xml Tomcat can be
configured to automatically hash passwords
with simple hash functions (e.g. MD5)

● We already have shown that this is not secure

Basic Authentication in Tomcat

● Web.xml

http://www.avajava.com/tutorials/lessons/how-do-i-use-basic-authentication-with-tomcat.html?page=1

Basic Authentication in Tomcat

● The authentication information is also included
in the request header (Base64-encoded)

● This authentication should not be done without
TLS/SSL

● Sent username + password are only encoded

http://www.avajava.com/tutorials/lessons/how-do-i-use-basic-authentication-with-tomcat.html?page=1

Form Authentication in Tomcat

● Creation of a login html page
● Creation of a failed login html page

● Automatically creates sessions

http://www.avajava.com/tutorials/lessons/how-do-i-use-form-authentication-with-tomcat.html?page=1

Form Authentication in Tomcat

● Example login.html

● Form with:
● action=“j_security_check“
● 2 text fields with "j_username" & "j_password"

http://www.avajava.com/tutorials/lessons/how-do-i-use-form-authentication-with-tomcat.html?page=1

Managing Sessions

● HttpClient can manage sessions at each request
● Session Ids from SecureRandom()
● HttpSession, SSLSessionManager?

Managing Sessions

● .setAttribute(String, Object)
● Adds information to the session; e.g. user name

● .getAttribute(String)
● Retrieves the information described by the input

● .setMaxInactiveInterval(int)
● Sets the maximum time between client requests

before the session automatically terminates

● .invalidate() - Manuell terminates session

Managing Sessions

● Session tracking modes:
● Cookie

– The server sends the user a JSESSIONID cookie
after authentication

– The user uses the JSESSIONID in every
following header to identify himself

● SSL
● URL

– Rewriting the URL to include the ID

http://static2.fr.de/storage/image/4/2/3/7/657324_608x342_1oFefH_eH4orI.jpg

Managing Sessions

● Session tracking modes:
● Can be changed at servlet start

– ServletContextListener
– Web.xml

Authentication Filters

● Servlet Filters are used on every
request/response before the actual servlet

● Block requests / redirect
● Modify request / response header & data

● E.g. to check if user sending the request is
logged-in or not

Authentication Filters

● doFilter() is called for every request
● chain.doFilter(req, res) sends the request to the

next filter or to the servlet

https://stackoverflow.com/tags/servlet-filters/info

Authentication Filters

● Add the filter to the web.xml
● Declare which URLs should be filtered

● Do not filter the login page! -> loop
● Filter specific servlets : <servlet-name> ... </..>

Aside: Servlet Listener

● Different Listener for different kinds of events
● ServletContextListener

– Startup, Shutdown of the servlet
● HttpSessionListener

– Session lifecycle events
● ServletRequestListener

– Request events

References

● http://www.avajava.com/tutorials/lessons/how-do-i-use-basic-
authentication-with-tomcat.html

● http://www.avajava.com/tutorials/lessons/how-do-i-use-form-
authentication-with-tomcat.html

● http://www.avajava.com/tutorials/lessons/how-do-i-use-basic-
authentication-and-ssl-with-tomcat.html

● https://stackoverflow.com/questions/13274279/authentication-
filter-and-servlet-for-login

● https://stackoverflow.com/questions/9965708/how-to-handle-
authentication-authorization-with-users-in-a-database

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32

