
  

Secure Communication

HTTPS – 
On the example of Tomcat webapps



  

HTTPS

● Hypertext Transfer Protocol Secure
● Encryption/decryption of data packages
● Additional Security Layer

– Transport Layer Security (TLS); old: SSL

https://www.oreilly.com/library/view/http-the-definitive/1565925092/httpatomoreillycomsourceoreillyimages96902.png



  

HTTPS

● Protects against eavesdropping
● Protects against Man-in-the-middle attacks?

● Only with certificate authentication!
– And trustworthy certificate authorities (CA)...

● Encryption through:
● Asymmetric keys (public & private key pair)
● Symmetric keys



  

Asymmetric key encryption

● e.g. RSA (Rivest-Shamir-Adleman)
● Calculate e,d,n such that:

● For a message m : (me)d ≡ m (mod n)
● Then also (md)e ≡ m (mod n)

=> n & e = public key

=> n & d = private key

● Is secure because prime factorization of large 
integers (n) takes a lot of time



  

Webservice Certificate

● To prove that the webservice is who the client 
believes it is

● Contains:
● Domain / server name, Location
● Organizational information, Validity time
● Public key
● Digital Signature



  

Webservice Certificate

● Self-signed Certificate is encrypted with your 
own private key

● Others can use your public key to verify that you 
encrypted the Certificate

● But noone trusts that this Certificate is actually 
from the owner of the website



  

Certificate Authority (CA)

● Trusted agencies that can verify & sign your 
certificate to build a chain of trust

● GWDG (https://info.gwdg.de/docs/doku.php?id=de:services:it_security:pki:start)

● Telecom, Bundesnetzargentur, Globalsign,        
Let's Encrypt, ...

● The most common ones are pre-stored in your web-
browser

● Root CAs
● What happens if such an agency is hacked?



  

TLS/SSL Implementation in 
Tomcat

● Only necessary if used as a stand-alone web 
server

● Not if used as a Servlet container; e.g. when 
using in combination with Apache Web Server

● Supported Certificate Keystores
● JKS (Java Keystore), PKCS11, PKCS12



  

TLS/SSL Implementation in 
Tomcat

● Creation of a new JKS keystore
● cd %JAVA_HOME%\bin
● keytool -genkey -alias tomcat -keyalg RSA

– Optional: -keystore \path\to\my\keystore
● Answer a few questions

– Tomcat default password: „changeit“
● Self-signed

– Not trustworthy, but good enough for a test



  

Implementation in Tomcat

● Creation of a new JKS keystore



  

Java keytool

● -genkeypair / -genkey
● Generates one private & public key pair
● -alias : The name of the private key
● -keyalg : Key generation algorithm used

–  RSA, DES, DSA
● -keystore : Location & name of the keystore file
● -keysize : Number of bytes used

–  1024, 2048, ...



  

Java keytool

● -list
● Prints the content of the keystore
● -alias : Only the specified key
● -v / -rfc : Human-readable output
● -keystore : Location & name of the keystore

● -certreq
● Generates a Certificate Signing Request (CSR)
● -alias / -keystore / -sigalg / etc. as before



  

TLS/SSL Implementation in 
Tomcat

● Find the server.xml in ..\Tomcat\conf
● Find the example connector with

● <Connector port="8443" 
protocol="org.apache.coyote.http11.Http11NioProtocol" …

● Change it to:



  

TLS/SSL Implementation in 
Tomcat

● Force your servlet to work with TLS/SSL
● Edit the web.xml and add:



  

References

● https://tomcat.apache.org/tomcat-8.0-doc/ssl-howto.html

● https://docs.oracle.com/javase/6/docs/technotes/tools/windows/
keytool.html

● https://docs.oracle.com/cd/E19830-01/819-
4712/ablrb/index.html



  

Webservice Multi-user Support

Session management & Authentication -
On the example of Tomcat webapps



  

Sessions

● Originally the HTTP protocol was meant to be 
state-less

● Demand of webservices to have a state specific 
to each client

● Solution?
● Cookies, hidden form fields, URL rewriting

=> Session management
* http://static2.fr.de/storage/image/4/2/3/7/657324_608x342_1oFefH_eH4orI.jpg

*



  

Basic Authentication in Tomcat

● Automatic popup for username/password if 
requesting a webapp

● Users are stored in the tomcat-users.xml
● Users can be given roles
● Webapps can be restricted to specific roles in 

the web.xml

● Does not work with sessions, but the 
Authorization request header



  

Basic Authentication in Tomcat

● Tomcat-users.xml

● Through the server.xml Tomcat can be 
configured to automatically hash passwords 
with simple hash functions (e.g. MD5)

● We already have shown that this is not secure



  

Basic Authentication in Tomcat

● Web.xml

http://www.avajava.com/tutorials/lessons/how-do-i-use-basic-authentication-with-tomcat.html?page=1



  

Basic Authentication in Tomcat

● The authentication information is also included 
in the request header (Base64-encoded)

● This authentication should not be done without 
TLS/SSL

● Sent username + password are only encoded

http://www.avajava.com/tutorials/lessons/how-do-i-use-basic-authentication-with-tomcat.html?page=1



  

Form Authentication in Tomcat

● Creation of a login html page
● Creation of a failed login html page

● Automatically creates sessions

http://www.avajava.com/tutorials/lessons/how-do-i-use-form-authentication-with-tomcat.html?page=1



  

Form Authentication in Tomcat

● Example login.html

● Form with:
● action=“j_security_check“
● 2 text fields with "j_username" & "j_password"

http://www.avajava.com/tutorials/lessons/how-do-i-use-form-authentication-with-tomcat.html?page=1



  

Managing Sessions

● HttpClient can manage sessions at each request
● Session Ids from SecureRandom()
● HttpSession, SSLSessionManager?



  

Managing Sessions

● .setAttribute(String, Object)
● Adds information to the session; e.g. user name

● .getAttribute(String)
● Retrieves the information described by the input

● .setMaxInactiveInterval(int)
● Sets the maximum time between client requests 

before the session automatically terminates

● .invalidate() - Manuell terminates session



  

Managing Sessions

● Session tracking modes:
● Cookie

– The server sends the user a JSESSIONID cookie 
after authentication

– The user uses the JSESSIONID in every 
following header to identify himself

● SSL
● URL

– Rewriting the URL to include the ID

http://static2.fr.de/storage/image/4/2/3/7/657324_608x342_1oFefH_eH4orI.jpg



  

Managing Sessions

● Session tracking modes:
● Can be changed at servlet start

– ServletContextListener
– Web.xml



  

Authentication Filters

● Servlet Filters are used on every 
request/response before the actual servlet

● Block requests / redirect
● Modify request / response header & data

● E.g. to check if user sending the request is 
logged-in or not



  

Authentication Filters

● doFilter() is called for every request
● chain.doFilter(req, res) sends the request to the 

next filter or to the servlet

https://stackoverflow.com/tags/servlet-filters/info



  

Authentication Filters

● Add the filter to the web.xml
● Declare which URLs should be filtered

● Do not filter the login page!  -> loop
● Filter specific servlets : <servlet-name> ... </..>



  

Aside: Servlet Listener

● Different Listener for different kinds of events
● ServletContextListener

– Startup, Shutdown of the servlet
● HttpSessionListener

– Session lifecycle events
● ServletRequestListener

– Request events



  

References

● http://www.avajava.com/tutorials/lessons/how-do-i-use-basic-
authentication-with-tomcat.html

● http://www.avajava.com/tutorials/lessons/how-do-i-use-form-
authentication-with-tomcat.html

● http://www.avajava.com/tutorials/lessons/how-do-i-use-basic-
authentication-and-ssl-with-tomcat.html

● https://stackoverflow.com/questions/13274279/authentication-
filter-and-servlet-for-login

● https://stackoverflow.com/questions/9965708/how-to-handle-
authentication-authorization-with-users-in-a-database
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